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Abstract
It is well known that the mapping condition given by Kannan1 is more lenient than contraction
condition. The purpose of this note is to introduce Kannan Iterated Function System which will
cover a larger range of mappings. We also prove the Collage theorem for the Kannan Iterated
Function System.
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1. INTRODUCTION

One of the most eye-catching applications of con-
traction mapping lies in fractal theory. Fractal
geometry has been found to be a very effective
mean for modeling the infinite details found in
nature. The re-exploration of fractal geometry is
usually traced back to the publication of the
book “The Fractal Geometry of Nature”2 by the
IBM mathematician Benoit B. Mandelbrot. Iter-
ated Function System is a method of constructing
fractals, which consists of a set of maps that explic-
itly list the similarities of the shape. Though the
formal name Iterated Function Systems or IFS was
coined by Barnsley and Demko3 in 1985, the basic
concept is usually attributed to Hutchinson.4 How-
ever Vrscay5 have traced the idea back to Williams,6

who studied fixed points of infinite composition of
contractive maps.

The idea of fractals and especially IFS has been
extensively studied because of its variety of appli-
cation in image compression, simulations and so on.
In 1994, Gröller7 showed that use of nonlinear func-
tion increases the flexibility when defining an IFS.
Study in this field was further carried on by Frame
and Angers.8 The concept of multifunction has been
applied by Torre and others.9–11

In this note we introduce a new Iterated Function
System namely “Kannan Iterated Function Sys-
tem” or “KIFS”, which will cover a larger range
of mappings.

2. ITERATED FUNCTION
SYSTEM

Let X denotes a complete metric space with dis-
tance function d and T be a mapping from X into
itself. Then T is called a contraction mapping if
there is a constant 0 ≤ s < 1 such that

d(T (x), T (y)) ≤ sd(x, y). (1)

The constant s is called the contractivity factor
for T .

Polish mathematician S. Banach proved a
very important result, regarding contraction map-
ping in 1922, known as Banach Contraction
principle.12

Theorem 2.1. Let T : X → X be a contraction
mapping, with contractivity factor ‘s’, on a complete
metric space (X, d). Then T possesses exactly one
fixed point x∗ ∈ X. Moreover, for any point x ∈ X,

the sequence {Tn(x) : n = 0, 1, 2, . . .} converges to
x∗. That is limn→∞ T n(x) = x∗, for each x ∈ X.

IFS generally employ contractive maps over a
complete metric space (X, d), where the Banach’s
celebrated result mentioned above guarantees the
existence and uniqueness of the fixed point known
as “attractor”. The main property of contraction
mapping which is used in IFS is given by the
following lemma:

Lemma 2.2. Let T : X → X be a contraction
mapping, with contractivity factor ′s′, on a complete
metric space (X, d). Then T is continuous.

We now discuss certain definitions required to
understand iterated function system. Let (X, d) be
a complete metric space and H(X) denote the space
whose points are the compact subsets of X known
as Hausdroff space, other than the empty set. Let
x, y ∈ X and let A,B ∈ H(X). Then

(1) distance from the point x to the set B is defined as

d(x,B) = min{d(x, y) : y ∈ B},

(2) distance from the set A to the set B is defined as

d(A,B) = max{d(x,B) : x ∈ A},

(3) Hausdroff distance from the set A to the set B is
defined as

h(A,B) = d(A,B) ∨ d(B,A).

Then the function h(d) is the metric defined on the
space H(X).

Note: Throughout this paper the notation u∨ v
means the maximum and u∧v denotes the minimum
of the pair of real numbers u and v.

In IFS, the contractive maps act on the mem-
bers of Hausdroff space, i.e., the compact subsets of
X. Thus, an iterated function system is defined as
follows:

A (hyperbolic) iterated function system consists
of a complete metric space (X, d) together with a
finite set of continuous contraction mappings Tn :
X → X with respect to contractivity factor sn, for
n = 1, 2, 3, . . . , N .

Thus, the following theorem was given by
Barnsley13:

Theorem 2.3. Let {X : Tn, n = 1, 2, 3, . . . , N} be
a iterated function system with contractivity factor
s. Then the transformation W : H(X) → H(X)
defined by W(B) =

⋃N
n=1 Tn(B) for all B ∈ H(X),
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is a contraction mapping on the complete met-
ric space (H(X), h(d)) with contractivity factor s.
That is

h(W(B),W(C)) ≤ sh(B,C).

Its unique fixed point, which is also called an
attractor, A ∈ H(X), obeys

A = W(A) =
N⋃

n=1

Tn(A),

and is given by A = limn→∞Won(B) for any
B ∈ H(X). W on denotes the n-fold composition
of W.

The contraction mappings used in IFS are typi-
cally affine maps. The iteration dynamics associated
with affine maps is not very interesting but when
the action of a system of contraction mappings is
considered the result is quite remarkable.

For example in two dimensions, let X = [0, 1]2,
consider the IFS formed by the following three affine
maps

f1(x, y) =
(

1
2
x,

1
2
y

)
,

f2(x, y) =
(

1
2
x +

1
2
,
1
2
y

)
,

f3(x, y) =

(
1
2
x +

1
2
,
1
2
y +

√
3

4

)
.

All the above mappings have contractivity factor 1
2

and their fixed point lies on the vertices of an equi-
lateral triangle (0, 0), (1, 0) and (1,

√
3

2 ). The result-
ing attractor is known as “Sierpinski gasket”.

3. K-ITERATED FUNCTION
SYSTEM

In this section, we shall try to explore the possi-
bility of improvement in IFS by replacing contrac-
tion condition by a more general condition known as
Kannan condition. In 1969, Kannan1 introduced a
mapping, which was an improvement over contrac-
tion mapping, known as Kannan mapping defined
as follows:

If there exists a number α, 0 < α < 1/2, such
that, for all x, y ∈ X,

d(T (x), T (y)) ≤ α[d(x, T (x)) + d(y, T (y))]. (2)

Then T is called a Kannan mapping. Let us name
α as K-contractivity factor of Kannan mapping T .

On the basis of definition of (hyperbolic) iterated
function system given by Barnsley,13 we now intro-
duce K-iterated function system:

A K-iterated function system consists of a com-
plete metric space (X, d) together with a finite
set of Kannan mappings Tn : X → X with
K-contractivity factor αn, for n = 1, 2, 3, . . . , N .

First of all we state and prove the two proposi-
tions which will establish a relation between Tm :
m = 1, 2, . . . , N and α; and uniqueness of fixed
point of T if it exists, respectively.

Proposition 3.1. Let T : X → X be a Kannan
mapping, with K-contractivity factor ‘α’, on a met-
ric space (X, d) and x ∈ X. Then T satisfies the
following condition:

d(Tm(x), Tm+1(x)) ≤
(

α

1 − α

)m

d(x, T (x)).

Moreover, limm→∞ d(Tm(x), Tm+1(x)) = 0

Proof. Since T is a Kannan contraction mapping,
we have

d(Tm(x), Tm+1) ≤ α(d(Tm−1(x), Tm(x))

+ d(Tm(x), Tm+1(x))).

It follows that

d(Tm(x), Tm+1(x))

≤ α

1 − α
d(Tm−1(x), Tm(x))

≤ α

1 − α

[
α

1 − α
d(Tm−2(x), Tm−1(x))

]
· · ·
· · ·

≤
(

α

1 − α

)m

d(x, T (x)).

Taking limit as m → ∞, we have

lim
m→∞ d(Tm(x), Tm+1(x))

≤ lim
m→∞

(
α

1 − α

)m

d(x, T (x)).

Therefore, limm→∞ d(Tm(x), Tm+1(x)) = 0, since
α

1−α < 1.

Proposition 3.2. Let T : X → X be a Kannan
mapping, with K-contractivity factor ‘α’, on a met-
ric space (X, d). If T has a fixed point, then it is
unique.
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Proof. On the contrary, let x∗ and y∗ be two fixed
points of T . Then x∗ = T (x∗), y∗ = T (y∗), and

d(x∗, y∗) = d(T (x∗), T (y∗))

≤ α[d(x∗, T (x∗)) + d(y∗, T (y∗))]

= α[d(x∗, x∗) + d(y∗, y∗)]

= 0,

Therefore, x∗ = y∗.

Next, we prove the following proposition, which
shows the principle underlying the Collage theorem
for Kannan mapping.

Proposition 3.3. Let T : X → X be a continuous
Kannan mapping on a complete metric space (X, d)
with contractivity factor and let x∗ ∈ X be the fixed
point of T . Then

d(x, x∗) ≤
(

1 − α

1 − 2α

)
d(x, T (x)), ∀x ∈ X.

Proof. For x ∈ X, we have limn→∞ T n(x) = x∗.
Taking the point a ∈ X as fixed, we know that the
distance function d(a, b) is continuous at the point
b ∈ X, we conclude

d(x, x∗) = d
(
x, lim

n→∞T n(x)
)

= lim
n→∞ d(x, Tn(x))

≤ lim
n→∞

n∑
m=1

d(Tm−1(x), Tm(x))

≤ lim
n→∞ d(x, T (x))

×
(

1 +
α

1 − α
+ · · · +

(
α

1 − α

)n−1
)

≤
(

1 − α

1 − α

)−1

d(x, T (x)).

This completes the proof.

Using Propositions 3.1 and 3.2 we now prove the
following theorem which is an extension of Contrac-
tion mapping theorem for Kannan mapping.

Theorem 3.4. Let T : X → X be a Kannan
mapping, with K-contractivity factor ′α′, on a com-
plete metric space (X, d). Then T possesses exactly
one fixed point x∗ ∈ X and moreover for any point
x ∈ X, the sequence {T n(x) : n = 0, 1, 2, . . .} con-
verges to x∗. That is limn→∞ T n(x) = x∗, for each
x ∈ X.

Proof. Let x ∈ X. Since T is a Kannan mapping
with K-contractivity factor α, we have

d(Tm(x), Tm+1(x)) ≤
(

α

1 − α

)m

d(x, T (x)),

∀m = 0, 1, 2, . . . .

Then, for any fixed x ∈ X, we get

d(T n(x), Tm(x)) ≤ sm∧nd(x, T |n−m|(x)), (3)

where m,n = 0, 1, 2, . . . and s := α
1−α . In partic-

ular, let us take k = |n − m|, for k = 0, 1, 2, . . . ,
we have

d(x, T k(x)) ≤ d(x, T (x)) + d(T (x), T 2(x))

+ · · · + d(T k−1(x), T k(x))

≤ (1 + s + s2 + · · · + sk−1)d(x, T (x))

≤
(

1 − sk

1 − s

)
d(x, T (x)).

On substituting in Eq. (3), we obtain

d(T n(x), Tm(x)) ≤ sm∧n(1 − sk)
1 − s

d(x, T (x)),

it immediately follows that {T n(x)}∞n=0 is a Cauchy
sequence. Since X is a complete metric space, this
Cauchy sequence has a limit x∗ ∈ X, and we have

lim
n→∞T n(x) = x∗. (4)

Now to prove that x∗ is a fixed point of T we see
that

d(x∗, T (x∗)) ≤ d(x∗, T n(x)) + d(T n(x), T (x∗))

≤ d(x∗, T n(x)) + α[d(T n−1(x), T n(x))

+ d(x∗, T (x∗))].

Taking limit as n → ∞, on considering Eqn. (4)
and Proposition (3.1), we get d(x∗, T (x∗)) ≤ (1 +
α)d(x∗, T (x∗)). Hence x∗ = T (x∗). By Proposi-
tion 3.2, x∗ is unique. This completes the proof.

Lemma 3.5. Let T : X → X be a continuous
Kannan mapping on the metric space (X, d) with
K-contractivity factor ‘α’. Then T : H(X) → H(X)
defined by T (B) = {T (x) : x ∈ B}) for every
B ∈ H(X) is a Kannan mapping on (H(X), h(d))
with contractivity factor α.

Proof. Since T is a continuous mapping, therefore
by Lemma 2 of Ref. 13, T maps H(X) into itself.
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Let B,C ∈ H(X). Then

h(T (B), T (C)) = d(T (B), T (C)) ∨ d(T (C), T (B))

≤ α{[d(B,T (B)) + d(C, T (C))]

∨ [d(C, T (C)) + d(B,T (B))]}
= α[d(B,T (B)) + d(C, T (C))]

≤ α[h(B,T (B)) + h(C, T (C))].

Therefore,

h(T (B), T (C)) ≤ α[h(B,T (B)) + h(C, T (C))].

This completes the proof.

Lemma 3.6. Let (X, d) be a metric space. Let
Tn : n = 1, 2, 3, . . . , N be continuous Kannan map-
pings on (H(X), h). Let the K-contractivity fac-
tor for Tn be denoted by αn for each n. Define
T : H(X) → H(X) by T (B) = T1(B) ∪ T2(B) ∪
· · · ∪ TN (B) =

⋃N
n=1 Tn(B) for each B ∈ H(X).

Then T is a Kannan mapping with K-contractivity
factor α = max{αn : n = 1, 2, . . . , N}.

Proof. We shall prove the theorem using mathe-
matical induction method using the properties of
metric h. For N = 1, the statement is obviously
true. Now for N = 2, we see that

h(T (B),T (C))

= h(T1(B) ∪ T2(B), T1(C) ∪ T2(C))

≤ h(T1(B), T1(C)) ∨ h(T2(B), T2(C))

≤ α1[h(B,T1(B)) + h(C, T1(C))]

∨α2[h(B,T2(B)) + h(C, T2(C))]

≤ (α1 ∨ α2)[{h(B,T1(B)) ∨ h(B,T2(B))}
+ {h(C, T1(C)) ∨ h(C, T2(C))}]

= α[h(B,T1(B) ∪ T2(B))

+ h(C, T1(C) ∪ T2(C))].

Therefore,

h(T (B),T (C)) ≤ α[h(B,T (B)) + h(C,T (C))].

By the condition of mathematical induction
Lemma 3.6 is proved.

Thus, from all the above results and the defini-
tion of K-iterated function system (KIFS), we are
in the position to present the following theorem for
KIFS.

Theorem 3.7. Let {X; (T0), T1, T2, . . . , TN}, where
T0 is the condensation mapping be a K-iterated

function system with K-contractivity factor α. Then
the transformation T : H(X) → H(X) defined by
T (B) =

⋃N
n=1 Tn(B) for all B ∈ H(X) is a con-

tinuous Kannan mapping on the complete metric
space (H(X), h(d)) with contractivity factor α. Its
unique fixed point, which is also called an attractor,
A ∈ H(X), obeys

A = T (A) =
N⋃

n=1

A,

and is given by A = limn→∞ T on(B) for any
B ∈ H(X).

Based on above mathematical formulation of
Proposition 3.3, we can prove the following Collage
theorem for KIFS.

Theorem 3.8. Let (X, d) be a complete metric
space. Let L ∈ H(X) be given and ε ≥ 0 be given.
Choose an KIFS {X; (T0), T1, T2, . . . , TN}, where T0

is the condensation mapping with K-contractivity
factor α, so that

h


L,

N⋃
n=0,n=1

Tn(L)


 ≤ ε.

Then

h(L,A) ≤ ε
1 − α

1 − 2α
,

where A is the attractor of the KIFS. Equivalently,

h(L,A) ≤
(

1 − α

1 − 2α

)
· h


L,

N⋃
n=0,n=1

Tn(L)


 ,

for all L ∈ H(X).
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