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1. Introduction

Cone metric spaces were introduced by Huang and Zhang [9]. Then, several fixed
and common fixed point theorems in cone meteric spaces were proved in [1-7,23,25]
and the references contained therein.

In 2006, Bhaskar and Lakshmikantham [15] considered the concept of coupled fixed
point theorems in partially ordered metric spaces. Afterward, many authors gener-
alized and proved several common coupled fixed and coupled fixed point theorems in
ordered metric and ordered cone metric spaces (see [16],[17], [20], [22],[24], [25]).

Recently, Cho et al. [19] introduced a new concept of a c-distance; a cone version
of a w-distance of Kada et al. [13], in cone metric spaces and proved some fixed point
theorems in partially ordered cone metric spaces under c-distance. Then sintunavarat
et al. [18] proved fixed point theorems and extended the Banach contraction theorem
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on c-distance. Subsequently, several authors have studied and proved fixed point the-
orems under generalized distance in cone metric spaces, e.g ([12],[21],[24],[25]). In
2012, Cho et al. [20] proved coupled fixed point theorems under weak contractions by
using the concept of c-distance.

In this manuscript, we prove some coupled fixed point results with c-distance in cone
metric space. Our results generalize the result of Fadail and Ahmad [24].

2. Preliminaries
Definition 2.1[9]: Let E be a real Banach space and P be a subset of E. Then

P is called a cone if and only if

a): P is closed, non-empty, and P 6= {θ};
b): a, b ∈ R, a, b > 0,x, y ∈ P ⇒ ax+ by ∈ P ;
c): If x ∈ P and −x ∈ P then x = θ.

θ denote to the zero element in E.

Given a cone P ⊂ E, we define a partial ordering � with respect to P by

x � y ⇔ y − x ∈ P.

We shall write x ≺ y if x � y and x 6= y.Also, we write x� y if and only if y−x ∈ int P
(where int P is the interior of P ). The cone P is called normal if there is a numberK > 0

such that, for all x, y ∈ E, we have

θ � x � y ⇒‖ x ‖6 K ‖ y ‖ .

The least positive number satisfying the above is called the normal constant of P .

Definition 2.2[9]: Let X be a non-empty set and the mapping d : X × X → E

satisfies;

(i) θ � d (x, y): for all x, y ∈ X and d(x, y) = θ if and only if x = y;

(ii) d(x, y) = d(y, x): for all x, y ∈ X;
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(iii) d(x, z) � d(x, y) + d(y, z): for all x, y, z ∈ X.

Then, d is called a cone metric on X, and (X, d) is called a cone metric space.

Definition 2.3[9]: Let (X, d) be a cone metric space and {xn} be a sequence in
X and x ∈ X.

(1): for all c ∈ E with θ � c, if there exists a positive integerN such that d(xn, x)�
c for all n > N, then xn is said to be convergent and x is the limit of {xn} . We
denote this by xn → x,

(2): for all c ∈ E with θ � c, if there exists a positive integer N such that
d(xn, xm) � c for all n,m > N, then {xn} is called a Cauchy sequence in X,
and

(3): a cone metric space (X, d) is called complete if every Cauchy sequence in X

is convergent.

Lemma 2.4[7]:

(1) If E be a real Banach space with a cone P and a � λa where a ∈ P and 0 ≤ λ < 1,

then a = θ.

(2) If c ∈ int P, θ � an and an → θ, then there exists a positive integer N such that
an � c for all n ≥ N.

Next, we give the notion of c-distance on a cone metric space (X, d) of Wang and Guo
in [14] which is a generalization of w-distance of Kada et. al [13] with some properties.

Definition 2.5[14]:Let (X, d) be cone metric space. A function q : X × X → E

is called a c-distance on X if the following conditions hold:

(1) θ � q(x, y) for all x, y ∈ X,

(2) q(x, y) � q(x, y) + q(y, z) for all x, y, z ∈ X,

(3) for each x ∈ X and n ≥ 1 if q(x, yn) � u for some u = ux ∈ P, then q(x, y) � u

whenever {yn} is a sequence in X converging to a point y ∈ X, and
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(4) for all c ∈ E with θ � c, there exists e ∈ E with θ � e such that q(z, x) � e and
q(z, y)� e imply d(x, y)� c.

Example 2.6[14]: Let E = R andP = {x ∈ E : x ≥ 0} . Let X = [0,∞) and define
a mapping d : X × X → E by d(x, y) = (|x − y|) for all x, y ∈ X. Then (X, d) is a cone
metric space. Define a mapping q : X ×X → E by q(x, y) = y for for all x, y ∈ X. Then
q is a c-distance on X.

Lemma 2.7[14]:Let (X, d) be a cone metric space and q is a c-distance on X.

Let{xn}and {yn} be sequences in X and x, y, z ∈ X. Suppose that un is a sequences in
P converging to θ. Then the following hold:

(1) If q(xn, y) � un and q(xn, z) � un, then y = z.

(2) If q(xn, yn) � un and q(xn, z) � un, then {yn} converges to z.

(3) If q(xn, xm) � un for m > n, then {xn} is a Cauchy sequence in X.

(4) If q(y, xn) � un, then {xn} is a Cauchy sequence in X.

Remark 2.8[14]:

(1) q(x, y) = q(y, x) does not necessarily for all x, y ∈ X.

(2) q(x, y) = θ is not necessarily equivalent to x = y for all x, y ∈ X.

3. Main Results

In this section, we prove some coupled fixed point theorems under c-distance in the
context of cone metric spaces.

Theorem 3.1. Let (X, d) be a complete cone metric space and q is a c-distance on
X. Let F : X ×X → X be a mapping and suppose that there exists mappings
k, l, r, n : X ×X → [0, 1) such that the following hold:

(a) k(F (x, y), F (u, v)) ≤ k(x, y), l(F (x, y), F (u, v)) ≤ l(x, y),

r(F (x, y), F (u, v)) ≤ r(x, y) andn(F (x, y), F (u, v)) ≤ n(x, y) for all x, y, u, v ∈ X;
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(b) k(x, y) = k(y, x), l(x, y) = l(y, x), r(x, y) = r(y, x) and n(x, y) = n(y, x) for all x, y ∈
X;

(c) (k + l + r + 2n)(x, y) < 1 for all x, y ∈ X;

(d) q(F (x, y), F (u, v)) � k(x, y)q(x, u) + l(x, y)q(x, F (x, y))

+r(x, y)q(u, F (u, v))

+n(x, y)[q(F (x, y), u) + q(F (u, v), x)]

for all x, y, u, v ∈ X.

Then F has a coupled fixed point (x?, y?) ∈ X × X. Further, if x1 = F (x1, y1), and
y1 = F (y1, x1) then q(x1, x1) = θ and q(y1, y1) = θ. Moreover, the coupled fixed point is
unique and is of the form (x?, x?) for some x? ∈ X.

Proof. Take x0, y0 ∈ X, Set x1 = F (x0, y0), y1 = F (y0, x0),

x2 = F (x1, y1), y2 = F (y1, x1),−−−−−− xn+1 = F (xn, yn), yn+1 = F (yn, xn). Then we
have
q(xn, xn+1) = q(F (xn−1, yn−1), F (xn, yn))

� k(xn−1, yn−1)q(xn−1, xn)+l(xn−1, yn−1)q(xn−1, F (xn−1, yn−1))+r(xn−1, yn−1)q(xn, F (xn, yn))

+n(xn−1, yn−1)[q(F (xn−1, yn−1), xn) + q(F (xn, yn), xn−1))]

= k(F (xn−2, yn−2), F (yn−2, xn−2))q(xn−1, xn)+l(F (xn−2, yn−2), F (yn−2, xn−2))q(xn−1, xn)

+r(F (xn−2, yn−2), F (yn−2, xn−2))q(xn, xn+1)

+n(F (xn−2, yn−2), F (yn−2, xn−2))[q(xn, xn) + q(xn+1, xn−1)]

� k(xn−2, yn−2)q(xn−1, xn) + l(xn−2, yn−2)q(xn−1, xn)

+r(xn−2, yn−2)q(xn, xn+1) + n(xn−2, yn−2)[q(xn+1, xn) + q(xn, xn−1)]

� ...

� k(x0, y0)q(xn−1, xn) + l(x0, y0)q(xn−1, xn)+

r(x0, y0)q(xn, xn+1) + n(x0, y0)[q(xn+1, xn) + q(xn−1, xn)]−−−−− (3.1)
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and similarly

q(yn, yn+1) = q(F (yn−1, xn−1), F (yn, xn))

� k(yn−1, xn−1)q(yn−1, yn)+l(yn−1, xn−1)q(yn−1, F (yn−1, xn−1))+r(yn−1, xn−1)q(yn, F (yn, xn))

+n(yn−1, xn−1)[q(F (yn−1, xn−1), yn) + q(F (yn, xn), yn−1)]

= k(F (yn−2, xn−2), F (xn−2, yn−2))q(yn−1, yn)+l(F (yn−2, xn−2), F (xn−2, yn−2))q(yn−1, yn)

+r(F (yn−2, xn−2), F (xn−2, yn−2))q(yn, yn+1)

+n(F (yn−2, xn−2), F (xn−2, yn−2))[q(yn, yn) + q(yn+1, yn−1)]

� k(yn−2, xn−2)q(yn−1, yn) + l(yn−2, xn−2)q(yn−1, yn)

+r(yn−2, xn−2)q(yn, yn+1) + n(yn−2, xn−2)[q(yn+1, yn) + q(yn−1, yn)]

� ...

� k(x0, y0)q(yn−1, yn) + l(x0, y0)q(yn−1, yn)+r(x0, y0)q(yn, yn+1)

+n(x0, y0)[q(yn+1, yn) + q(yn−1, yn)]−−−−− (3.2)

Put qn = q(xn, xn+1) + q(yn, yn+1). Then from (3.1) and (3.2), we have

qn = q(xn, xn+1) + q(yn, yn+1)

� (k(x0, y0) + l(x0, y0) + n(x0, y0))(q(xn−1, xn) + q(yn−1, yn))

+(r(x0, y0) + n(x0, y0))(q(xn, xn+1) + q(yn, yn+1))

= hqn−1

...
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� hnq0 −−−−− (3.3)

where h = k(x0,y0)+l(x0,y0)+n(x0,y0)
1−r(x0,y0)−n(x0,y0)

< 1.

Let m > n ≥ 1. It follows that

q(xn, xm) � q(xn, xn+1) + q(xn+1, xn+2) +−−−−+q(xm−1, xm)

q(yn, ym) � q(yn, yn+1) + q(yn+1, yn+2) +−−−−+q(ym−1, ym)

By adding above two, we have

q(xn, xm) + q(yn, ym) � qn + qn+1 +−−−−−− qm−1

� hnq0 + hn+1q0 +−−−−−+ hm−1q0

= (hn + hn+1 +−−−−−+ hm−1)q0

� hn

1−hq0 −−−−− (3.4)

From (3.4) we have

q(xn, xm) � hn

1−hq0 −−−−− (3.5)

and also q(yn, ym) � hn

1−hq0 −−−−− (3.6)

Thus, Lemma 2.7(3) shows that {xn} and {yn} are Cauchy sequence in X. Since X
is complete, there exists x? and y? ∈ X such that xn → x? and yn → y? as n → ∞. By
Definition 2.5(3) we have the following:

q(xn, x
?) � hn

1−hq0 −−−−− (3.7)

and also q(yn, y?) � hn

1−hq0 −−−−− (3.8)

On the other hand,
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q(xn, F (x
?, y?)) = q(F (xn−1, yn−1).F (x

?, y?))

� k(xn−1, yn−1)q(xn−1, x
?) + l(xn−1, yn−1)q(xn−1, F (xn−1, yn−1))

+r(xn−1, yn−1)q(x
?, F (x?, y?))

+n(xn−1, yn−1)[q(F (xn−1, yn−1), x
?) + q(F (x?, y?), xn−1)]

= k(F (xn−2, yn−2), F (yn−2, xn−2))q(xn−1, x
?)

+l(F (xn−2, yn−2), F (yn−2, xn−2))q(xn−1, xn)

+r(F (xn−2, yn−2), F (yn−2, xn−2))q(x
?, xn+1)

+n(F (xn−2, yn−2), F (yn−2, xn−2))[q(xn, x
?) + q(xn+1, xn−1)]

� k(xn−2, yn−2)q(xn−1, x
?) + l(xn−2, yn−2)q(xn−1, x

?)

+r(xn−2, yn−2)q(x
?, xn+1)

+n(xn−2, yn−2)[q(xn−1, x
?) + q(xn−1, x

?)]

� ...

� k(x0, y0)q(xn−1, x
?) + l(x0, y0)q(xn−1, x

?)

+r(x0, y0)q(x
?, xn+1) + n(x0, y0)[q(xn+1, x

?) + q(xn−1, x
?)]

= [k(x0, y0) + l(x0, y0) + n(x0, y0)]q(xn−1, x
?)

+[r(x0, y0) + n(x0, y0)]q(xn+1, x
?)

� k(x0,y0)+l(x0,y0)+n(x0,y0)
1−r(x0,y0)−n(x0,y0)

q(xn−1, x
?)

= hhn−1

1−h q0
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= hn

1−hq0 −−−−− (3.9)

By Lemma 2.7(1), (3.7) and (3.9), we have x? = F (x?, y?).By similar way we have y? =
F (y?, x?). Therefore (x?, y?) is a coupled fixed point of F. Suppose that x1 = F (x1, y1)

and y1 = F (y1, x1), then we have

q(x1, x1) = q(F (x1, y1), F (x1, y1))

� k(x1, y1)q(x1, x1) + l(x1, y1)q(x1, F (x1, y1))

+r(x1, y1)q(x1, F (x1, y1))

+n(x1, y1)[q(F (x1, y1), x1) + q(F (x1, y1), x1)]

= k(x1, y1)q(x1, x1) + l(x1, y1)q(x1, x1)

+r(x1, y1)q(x1, x1) + n(x1, y1)[q(x1, x1) + q(x1, x1)]−−−−− (3.10)

and also

q(y1, y1) � k(x1, y1)q(y1, y1) + l(x1, y1)q(y1, y1) + r(x1, y1)q(y1, y1)

+n(x1, y1)[q(y1, y1) + q(y1, y1)]−−−−− (3.11)

which implies that

q(x1, x1) + q(y1, y1) � (k(x1, y1) + l(x1, y1) + r(x1, y1) + 2n(x1, y1))

(q(x1, x1) + q(y1, y1))−−−−− (3.12)

Since (k + l + r + 2n)(x1, y1) < 1, Lemma 2.4(1) shows that q(x1, x1) + q(y1, y1) = θ.

But q(x1, x1) � θ and q(y1, y2) � θ, hence q(x1, x1) = θ and q(y1, y1) = θ.

Now, we show that the uniqueness of coupled fixed point. Suppose that there is
another coupled fixed point (x′ , y′) then we have
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q(x?, x
′
) = q(F (x?, y?), F (x

′
, y
′
))

� k(x?, y?)q(x?, x
′
) + l(x?, y?)q(x?, F (x?, y?))+r(x?, y?)q(x

′
, F (x

′
, y
′
))

+n(x?, y?)[q(F (x?, y?), x
′
) + q(F (x

′
, y
′
), x?)]

= k(x?, y?)q(x?, x
′
) + n(x?, y?)[q(x?, x

′
) + q(x

′
, x?)]−−−−− (3.13)

Similarly

q(y?, y
′
) � k(x?, y?)q(y?, y

′
) + n(x?, y?)[q(y?, y

′
) + q(y

′
, y?)]−−−−− (3.14)

which implies that

q(x?, x
′
) + q(y?, y

′
) � (k(x?, y?) + 2n(x?, y?))(q(x?, x

′
) + q(y?, y

′
))

= (k + 2n)(x?, y?)(q(x?, x
′
) + q(y?, y

′
))−−−−− (3.15)

Since (k + 2n)(x?, y?) < 1, Lemma 2.4(1) shows that q(x?, x′) + q(y?, y
′
) = θ. But

q(x?, x
′
) � θ and q(y?, y

′
) � θ. Hence q(x?, x

′
) = θ and q(y?, y

′
) = θ. Also we have

q(x?, x?) = θ and q(y?, y?) = θ. Hence Lemma 2.7(1) shows that x? = x
′and y? = y

′
,

which implies that (x?, y?) = (x
′
, y
′
). Similarly, we prove that x? = y

′ and y? = x
′.

Hence x? = y?. Therefore, the coupled fixed point is unique and is of the form (x?, x?)

for some x? ∈ X.

From above Theorem we have the following Corollaries.

Corollary 3.2. Let (X, d) be a complete cone metric space, and q is a c-distance on
X. Suppose that the mapping F : X ×X → X satisfies the following contractive
condition:

q(F (x, y), F (u, v)) � kq(x, u) + lq(x, F (x, y)) + rq(u, F (u, v))

+n[q(F (x, y), u) + q(F (u, v), x)]−−−−− (3.16)

for all x, y, u, v ∈ X,where k, l, r, n are nonnegative real constants with k+l+r+2n <

1. Then F has a coupled fixed point (x?, y?) ∈ X × X. Further, if x1 = F (x1, y1) and
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y1 = F (y1, x1) then q(x1, x1) = θ and q(y1, y1) = θ. Moreover, the coupled fixed point is
unique and is of the form (x?, x?) for some x? ∈ X.

By putting l = 0 and r = 0 in Corollary 3.2, we get the following Corollaries.

Corollary 3.3. Let (X, d) be a complete cone metric space, and q is a c-distance on
X. Suppose that the mapping F : X ×X → X satisfies the following contractive
condition:

q(F (x, y), F (u, v)) � kq(x, u) + n[q(F (x, y), u) + q(F (u, v), x)]−−−−− (3.17)

for all x, y, u, v ∈ X, where k, n are nonnegative real constants with k+2n < 1. Then
F has a coupled fixed point (x?, y?) ∈ X×X. Further, if x1 = F (x1, y1) and y1 = F (y1, x1)

then q(x1, x1) = θ and q(y1, y1) = θ. Moreover, the coupled fixed point is unique and is
of the form (x?, x?) for some x? ∈ X.

Corollary 3.4. Let (X, d) be complete cone metric space, and q is a c-distance on
X. Suppose that the mapping F : X ×X → X satisfies the following contractive
condition:

q(F (x, y), F (u, v)) � kq(x, u) + n[q(F (x, y), x) + q(F (u, v), u)]−−−−− (3.18)

for all x, y, u, v ∈ X, where k, n are nonnegative real constants with k+2n < 1. Then
F has a coupled fixed point (x?, y?) ∈ X×X. Further, if x1 = F (x1, y1) and y1 = F (y1, x1)

then q(x1, x1) = θ and q(y1, y1) = θ. Moreover, the coupled fixed point is unique and is
of the form (x?, x?) for some x? ∈ X.

Theorem 3.5. Let (X, d) be a complete cone metric space, and q is a c-distance on
X. Let F : X ×X → X be a mapping and suppose that there exists mappings
k, l, r : X ×X → [0, 1) such that the following hold:

(a) k(F (x, y), F (u, v)) ≤ k(x, y), l(F (x, y), F (u, v)) ≤ l(x, y) and
r(F (x, y), F (u, v)) ≤ r(x, y) for all x, y, u, v ∈ X;

(b) k(x, y) = k(y, x), l(x, y) = l(y, x) and r(x, y) = r(y, x) for all x, y ∈ X;

(c) (k + 2l + 2r)(x, y) < 1, for all x, y ∈ X, and
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(d) q(F (x, y), F (u, v)) � k(x, y)q(x, u) + l(x, y)[q(x, F (u, v)) + q(u, F (x, y))]

+r(x, y)[q(x, F (x, y)) + q(u, F (u, v))] for all x, y, u, v ∈ X;

Then F has a coupled fixed point (x?, y?) ∈ X × X. Further, if x1 = F (x1, y1) and
y1 = F (y1, x1) then q(x1, x1) = θ and q(y1, y1) = θ. Moreover, the coupled fixed point is
unique and is of the form (x?, x?) for some x? ∈ X.

Proof. Choose x0, y0 ∈ X, Set x1 = F (x0, y0), y1 = F (y0, x0),

x2 = F (x1, y1), y2 = F (y1, x1),−−−−−xn+1 = F (xn, yn), yn+1 = F (yn, xn).
Then we have the following:

q(xn, xn+1) = q(F (xn−1, yn−1), F (xn, yn))

� k(xn−1, yn−1)q(xn−1, xn)

+l(xn−1, yn−1)[q(xn−1, F (xn, yn)) + q(xn, F (xn−1, yn−1))]

+r(xn−1, yn−1)[q(xn−1, F (xn−1, yn−1)) + q(xn, F (xn, yn))]

= k(F (xn−2, yn−2), F (yn−2, xn−2))q(xn−1, xn)

+l(F (xn−2, yn−2), F (yn−2, xn−2))[q(xn−1, xn+1) + q(xn, xn)]

+r(F (xn−2, yn−2), F (yn−2, xn−2))[q(xn−1, xn) + q(xn, xn+1)]

� k(xn−2, yn−2)q(xn−1, xn) + l(xn−2, yn−2)[q(xn−1, xn) + q(xn, xn+1)]

+r(xn−2, yn−2)[q(xn−1, xn) + q(xn, xn+1)]

� ...

� k(x0, y0)q(xn−1, xn) + l(x0, y0)[q(xn−1, xn) + q(xn, xn+1)]

+r(x0, y0)[q(xn−1, xn) + q(xn, xn+1)]
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Then we have

q(xn, xn+1) � k(x0,y0)+l(x0,y0)+r(x0,y0)
1−l(x0,y0)−r(x0,y0)

q(xn−1, xn)

= hq(xn−1, xn)

� h2q(xn−2, xn−1)

� ...

� hnq(x0, x1)

i.e q(xn, xn+1) � hnq(x0, x1)−−−−(3.19)

where h = k(x0,y0)+l(x0,y0)+r(x0,y0)
1−l(x0,y0)−r(x0,y0)

< 1.

Similarly we have

q(yn, yn+1) � hnq(y0, y1)−−−−− (3.20)

Put qn = q(xn, xn+1) + q(yn, yn+1). Then we have

qn = q(xn, xn+1) + q(yn, yn+1)

� hn(q(x0, x1) + q(y0, y1)) = hnq0

i.e qn � hnq0 −−−−− (3.21)

where h = k(x0,y0)+l(x0,y0)+r(x0,y0)
1−l(x0,y0)−r(x0,y0)

< 1.

Let m > n ≥ 1. Then it follows that

q(xn, xm) � q(xn, xn+1) + q(xn+1, xn+2) +−−−−−+ q(xm−1, xm)
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and q(yn, ym) � q(yn, yn+1) + q(yn+1, yn+2) +−−−−−+ q(ym−1, ym),

Then we have

q(xn, xm) + q(yn, ym) � qn + qn+1 +−−−−−+ qm−1

� hnq0 + hn+1q0 +−−−−−+ hm−1q0

= (hn + hn+1 +−−−−−+ hm−1)q0

� hn

1−hq0 −−−−− (3.22)

From (3.22), we have

q(xn, xm) � hn

1−hq0 −−−−− (3.23)

and also q(yn, ym) � hn

1−hq0 −−−−− (3.24)

Thus, Lemma 2.7(3) shows that {xn}and {yn} are Cauchy sequence in X. Since X
is complete, there exists x? and y? ∈ X such that xn → x? and yn → y? as n → ∞. By
Definition 2.5(3) we have the following:

q(xn, x
?) � hn

1−hq0 −−−−− (3.25)

and also q(yn, y?) � hn

1−hq0 −−−−− (3.26)

On the other hand,

q(xn, F (x
?, y?)) = q(F (xn−1, yn−1), F (x

?, y?))

� k(xn−1, yn−1)q(xn−1, x
?)

+l(xn−1, yn−1)[q(xn−1, F (x
?, y?)) + q(x?, F (xn−1, yn−1))]

+r(xn−1, yn−1)[q(xn−1, F (xn−1, yn−1)) + q(x?, F (x?, y?))]
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= k(F (xn−2, yn−2), F (yn−2, xn−2))q(xn−1, x
?)

+l(F (xn−2, yn−2), F (yn−2, xn−2))[q(xn−1, xn+1) + q(x?, xn)]

+r(F (xn−2, yn−2), F (yn−2, xn−2))[q(xn−1, xn) + q(x?, xn+1)]

� k(xn−2, yn−2)q(xn−1, x
?) + l(xn−2, yn−2)[q(xn−1, x

?) + q(x?, xn+1)]

+r(xn−2, yn−2)[q(xn−1, xn) + q(x?, xn+1)]

� ...

� k(x0, y0)q(xn−1, x
?) + l(x0, y0)[q(xn−1, x

?) + q(x?, xn+1)]

+r(x0, y0)[q(xn−1, x
?) + q(x?, xn+1)]

= (k(x0, y0) + l(x0, y0) + r(x0, y0))q(xn−1, x
?)

+(l(x0, y0) + r(x0, y0))q(x
?, xn+1)

� k(x0,y0)+l(x0,y0)+r(x0,y0)
1−l(x0,y0)−r(x0,y0)

q(xn−1, x
?)

= hhn−1

1−h q0 =
hn

1−hq0 −−−−− (3.27)

By Lemma 2.7(1), (3.25) and (3.27), we have x? = F (x?, y?). By similar way we have
y? = F (y?, x?). Therefore (x?, y?) is a coupled fixed point of F.

Suppose that x1 = F (x1, y1) and y1 = F (y1, x1), then we have

q(x1, x1) = q(F (x1, y1), F (x1, y1))
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� k(x1, y1)q(x1, x1) + l(x1, y1)[q(x1, F (x1, y1)) + q(x1, F (x1, y1))]

+r(x1, y1)[q(x1, F (x1, y1)) + q(x1, F (x1, y1))]

= k(x1, y1)q(x1, x1) + l(x1, y1)[q(x1, x1) + q(x1, x1)]

+r(x1, y1)[q(x1, x1) + q(x1, x1)]−−−−− (3.28)

and also

q(y1, y1) = q(F (y1, x1), F (y1, x1))

� k(y1, x1)q(y1, y1) + l(y1, x1)[q(y1, y1) + q(y1, y1)]

+r(y1, x1)[q(y1, y1) + q(y1, y1)]

= k(x1, y1)q(y1, y1) + l(x1, y1)[q(y1, y1) + q(y1, y1)]

+r(x1, y1)[q(y1, y1) + q(y1, y1)]−−−−− (3.29)

which implies that

q(x1, x1) + q(y1, y1) � (k(x1, y1) + 2l(x1, y1) + 2r(x1, y1))

(q(x1, x1) + q(y1, y1))

= (k + 2l + 2r)(x1, y1)(q(x1, x1) + q(y1, y1))−−−−− (3.30)

Since (k + 2l + 2r)(x1, y1) < 1, Lemma 2.4(1) shows that q(x1, x1) + q(y1, y1) = θ. But
q(x1, x1) � θ and q(y1, y2) � θ, hence q(x1, x1) = θ and q(y1, y1) = θ.

Finally, suppose that there is another coupled fixed point (x′ , y′) then we have

q(x?, x′) = q(F (x?, y?), F (x
′
, y
′
))
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� k(x?, y?)q(x?, x
′
) + l(x?, y?)[q(x?, F (x

′
, y
′
)) + q(x

′
, F (x?, y?))]

+r(x?, y?)[q(x?, F (x?, y?)) + q(x
′
, F (x

′
, y
′
))]

= k(x?, y?)q(x?, x
′
) + l(x?, y?)[q(x?, x

′
) + q(x

′
, x?)]

+r(x?, y?)[q(x?, x?) + q(x
′
, x
′
)]

� k(x?, y?)q(x?, x
′
) + 2l(x?, y?)q(x?, x

′
)−−−−− (3.31)

and also

q(y?, y
′
) = q(F (y?, x?), F (y

′
, x
′
))

� k(y?, x?)q(y?, y
′
) + l(y?, x?)[q(y?, F (y

′
, x
′
)) + q(y

′
, F (y?, x?))]

+r(y?, x?)[q(y?, F (y?, x?)) + q(y
′
, F (y

′
, x
′
))]

= k(y?, x?)q(y?, y
′
) + l(y?, x?)[q(y?, y

′
) + q(y

′
, y?)]

+r(y?, x?)[q(y?, y?) + q(y
′
, y
′
)]

� k(x?, y?)q(y?, y
′
) + 2l(x?, y?)q(y?, y

′
)−−−−− (3.32)

which implies that

q(x?, x
′
) + q(y?, y

′
) � (k(x?, y?) + 2l(x?, y?))(q(x?, x

′
) + q(y?, y

′
))

= (k + 2l)(x?, y?)(q(x?, x
′
) + q(y?, y

′
))−−−−− (3.33)

Since (k + 2l)(x?, y?) < 1, Lemma 2.4(1) shows that q(x?, x′) + q(y?, y
′
) = θ. But

q(x?, x
′
) � θ and q(y?, y

′
) � θ. Hence q(x?, x

′
) = θ and q(y?, y

′
) = θ. Also we have

q(x?, x?) = θ and q(y?, y?) = θ. Hence Lemma 2.7(1) shows that x? = x
′and y? = y

′
,

which implies that (x?, y?) = (x
′
, y
′
). Similarly, we prove that x? = y

′ and y? = x
′.
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Hence x? = y?. Therefore, the coupled fixed point is unique and is of the form (x?, x?)

for some x? ∈ X.

Corollary 3.6. Let (X, d) be a complete cone metric space, and q is a c-distance on
X. Suppose that the mapping F : X ×X → X satisfies the following contractive
condition:

q(F (x, y), F (u, v)) � kq(x, u) + l[q(x, F (u, v)) + q(u, F (x, y))]

+r[q(x, F (x, y)) + q(u, F (u, v))]−−−−− (3.34)

for all x, y, u, v ∈ X, where k, l, r are nonnegative constants with k+2l+2r < 1. Then
F has a coupled fixed point (x?, y?) ∈ X×X. Further, if x1 = F (x1, y1) and y1 = F (y1, x1)

then q(x1, x1) = θ and q(y1, y1) = θ. Moreover, the coupled fixed point is unique and is
of the form (x?, x?) for some x? ∈ X.

Example 3.7. Let E = R2 andP = {(x, y) ∈ E : x, y ≥ 0} . Let X = [0, 1) and define
a mapping d : X ×X → E by

d(x, y) = (|x − y|, |x − y|) for all x, y ∈ X. Then (X, d) is complete cone metric space,
see[6]. Define a mapping q : X × X → E by q(x, y) = (y, y) for all x, y ∈ X. Then q is
a c-distance on X. In fact, first three conditions of Definition 2.5 are immediate. Let
c ∈ E with θ � c and put e = c/2. If q(z, x)� e and q(z, y)� e, then we have

d(x, y) = (|x− y|, |x− y|)

� (x+ y, x+ y)

= (x, x) + (y, y)

= q(z, x) + q(z, y)

� e+ e

= c.−−−−− (3.35)
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This shows that fourth condition of Definition 2.5 holds. Therefore, q is c-distance
on X. Define the mapping F : X ×X → X by F (x, y) = x+y

8
for all (x, y) ∈ X ×X. Then

we have

q(F (x, y), F (u, v)) = (F (u, v), F (u, v))

= (u+v
8
, u+v

8
) = (u

8
, u
8
) + (v

8
, v
8
)

= (1
8
)(u, u) + (1

8
)(v, v)

� (1
4
)(u, u) + (2

4
)(v, v)

= (1
4
)(u, u) + (1

4
)[(v, v) + (v, v)]

= (1
4
)(u, u) + (1

4
)[q(x, v) + q(u, v)]

= (1
4
)(u, u) + (1

4
)[q(v, x) + q(v, u)]

= (1
4
)(u, u) + (1

4
)[(x, x) + (u, u)]

= (1
4
)(u, u) + (1

4
)[q(F (x, y), x) + q(F (u, v), u)]

� kq(x, u) + n[q(F (x, y), x) + q(F (u, v), u)]

with k = n = 1
4
, and k+2n = 3

4
< 1.Therefore, the condition of Corollary 3.4 are satis-

fied, and then F has a unique coupled fixed (x, y) = (0, 0) andF (0, 0) = 0with q(0, 0) = 0.
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